Парадоксы Зенона Элейского
Зенон Элейский – греческий логик и философ, который в основном известен по парадоксам, названным в его честь. О его жизни известно не очень много. Родной город Зенона – Элея. Также в трудах Платона упоминалась встреча философа с Сократом.
Примерно в 465 году до н. э. Зенон написал книгу, где подробно изложил все свои идеи. Но, к сожалению, до наших дней она не дошла. Согласно легенде, философ погиб в бою с тираном (предположительно, главой Элеи Неархом). Всю информацию о Элейском собирали по крупицам: из трудов Платона (родившегося на 60 лет позже Зенона), Аристотеля и Диогена Лаэртия, написавшего три века спустя книгу биографий греческих философов. Упоминания о Зеноне есть и в трудах поздних представителей школы греческой философии: Фемистия (4 век н. э.), Александра Афродийского (3 век н. э.), а также Филопона и Симплиция (оба жили в 6 веке н. э.). Причём данные в этих источниках настолько хорошо согласуются между собой, что по ним можно реконструировать все идеи философа. В этой статье мы расскажем вам про парадоксы Зенона. Итак, приступим.
Парадоксы множества
Ещё с эпохи Пифагора пространство и время рассматривались исключительно с точки зрения математики. То есть считалось, что они составлены из множества моментов и точек. Однако у них есть свойство, которое проще ощутить, чем определить, а именно «непрерывность». Некоторые парадоксы Зенона доказывают, что её невозможно разделить на моменты или точки. Рассуждение философа сводится к следующему: «Допустим, что мы провели деление до конца. Тогда верен только один вариант из двух: либо мы получим в остатке минимально возможные величины или части, которые неделимы, но бесконечны в своём количестве, либо деление приведёт нас к частям без величины, так как непрерывность, являясь однородной, должна быть делимой при любых обстоятельствах. Она не может быть в одной части делима, а в другой – нет. К сожалению, оба результата довольно нелепы. Первый из-за того, что процесс деления не может закончиться, пока в остатке есть части, имеющие величину. А второй потому, что в подобной ситуации изначально целое было бы сформировано из ничего». Симплиций приписывал данное рассуждение Пармениду, но более вероятно, что его автор – Зенон. Идём далее.
Парадоксы Зенона о движении
Они рассматриваются в большей части книг, посвящённых философу, поскольку вступают в диссонанс со свидетельствами чувств элеатов. Применительно к движению, выделяют следующие парадоксы Зенона: «Стрела», «Дихотомия», «Ахилл» и «Стадий». И дошли они до нас благодаря Аристотелю. Давайте рассмотрим их подробней.
«Стрела»
Другое название – квантовый парадокс Зенона. Философ утверждает, что любая вещь либо стоит на месте, либо движется. Но ничто не пребывает в движении, если занимаемое пространство равное ему по протяжённости. В определённый момент движущаяся стрела находится на одном месте. Поэтому она не движется. Симплиций сформулировал этот парадокс в краткой форме: «Летящий предмет занимает равное себе место в пространстве, а то, что занимает равное себе место в пространстве, не движется. Следовательно, стрела покоится». Фемистий и Фелопон сформулировали аналогичные варианты.
«Дихотомия»
Занимает второе место списка «Парадоксы Зенона». Он гласит следующее: «Прежде чем объект, который начал движение, сможет пройти определённое расстояние, он должен преодолеть половину данного пути, далее половину оставшегося и т. д. до бесконечности. Так как при повторных делениях расстояния пополам отрезок всё время становится конечным, а число данных отрезков бесконечно, то это расстояние невозможно преодолеть за конечное время. Причём данный довод справедлив как в отношении малых расстояний, так и больших скоростей. Следовательно, любое движение невозможно. То есть бегун даже не сможет стартовать».
Этот парадокс очень подробно прокомментировал Симплиций, указав, что в данном случае за конечное время нужно совершить бесконечное количество касаний. «Тот, кто чего-либо касается, может вести счёт, но бесконечное множество нельзя перебрать или сосчитать». Или, как сформулировал Филопон, бесконечное множество неопределимо.
«Ахилл»
Также известен, как парадокс черепахи Зенона. Это наиболее популярное рассуждение философа. В этом парадоксе движения Ахиллес состязается в беге с черепахой, которой на старте даётся небольшая фора. Парадокс в том, что греческому воину не удастся догнать черепаху, так как сначала он добежит до места её старта, а она уже будет на следующей точке. То есть черепаха постоянно будет впереди Ахиллеса.
Этот парадокс очень похож на дихотомию, но здесь бесконечное деление идёт сообразно прогрессии. В случае же дихотомии была регрессия. К примеру, тот же бегун не может стартовать, потому что не может покинуть своего местонахождения. А в ситуации с Ахиллом, даже если бегун тронется с места, он всё равно никуда не прибежит.
«Стадий»
Если сравнивать все парадоксы Зенона по степени сложности, то этот вышел бы победителем. Он труднее прочих поддаётся изложению. Симплиций и Аристотель описали это рассуждение фрагментарно, и нельзя со 100 % уверенностью полагаться на его надёжность. Реконструкция данного парадокса имеет следующий вид: пусть А1, А2, А3 и А4 являются неподвижными телами равного размера, а Б1, Б2, Б3 и Б4 – это тела того же размера, что и А. Тела Б движутся вправо так, что каждое Б минует А за одно мгновение, являющееся наименьшим промежутком времени из всех возможных. Пусть В1, В2, В3 и В4 – тела идентичные А и Б, и движутся относительно А влево, преодолевая каждое из тел за одно мгновение.
Очевидно, что В1 преодолело все четыре тела Б. Примем за единицу время, понадобившееся одному телу В для прохождения одного тела Б. В этом случае на всё передвижение понадобилось четыре единицы. Однако считалось, что два момента, прошедших за это передвижение, минимальны и потому – неделимы. Из этого следует, что четыре неделимых единицы равны двум неделимым единицам.
«Место»
Итак, теперь вы знаете основные парадоксы Зенона Элейского. Осталось рассказать о последнем, который известен под названием «Место». Данный парадокс Зенону приписывает Аристотель. Похожие рассуждения приводились в трудах Филопона и Симплиция в 6 веке н. э. Вот как Аристотель рассказывает об этой проблеме в своей Физике: «Если существует какое-то место, то как определить, где оно находится? Затруднение, к которому пришел Зенон, требует объяснения. Поскольку всё существующее имеет место, то становится очевидным, что и у места должно быть место, и т. д. до бесконечности». По мнению большинства философов, парадокс здесь появляется только потому, что ничто из существующего не может отличаться от самого себя и содержаться само в себе. Филопон считает, что, акцентируя внимание на самопротиворечивости понятия «места», Зенон хотел доказать несостоятельность теории множественности.
- А.Г. Спиркин, `Философия`: учебник для вузов
- Философия Платона.
- Возникновение философии
- Город Сухуми. Абхазия и ее главный курорт
- Материковая Испания. Ронда и ее достопримечательности
- Лейпциг (Германия) – деловой центр страны
- Биография Федора Емельяненко – история спортсмена, заслуживающего уважения
- Что представляет собой информационное поле
- Милетская школа философии и ее основные представители
- `Поучение детям` - великая книга с тысячелетней историей
- Как по номеру телефона город узнать
- Характеристика Платона Каратаева в романе `Война и мир`
- Философ Людвиг Витгенштейн: биография, личная жизнь, цитаты
- История теоремы Пифагора. Доказательство теоремы
- Город Сызрань: достопримечательности, история и архитектура
- Город Саламанка (Испания): история, достопримечательности, фото
- Маркс, Энгельс. Философские идеи Карла Маркса и Фридриха Энгельса
- Виртуоз – это профессионал
- Игорь Свинаренко: биография, деятельность, книги
- Гилозоизм: это что такое? Определение
- Белфаст - столица Северной Ирландии